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Objective. Detect LLM-generated texts (LGTs)
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Motivation & Observations

✓ Reward Model recognize LLM

Method: Continual Preference Tuning  

✓ Continual training with Human/LLM texts.

✓ Train with Mixed Human/LLM texts.

Overview

4

t-SNEReward Score 
Distribution

Aligned LLMs optimized to maximize preferences.
LGTs have higher rewards than human-written texts.

TL; DR. Reward models recognize aligned LLM-generated texts (LGTs) and 
continually train reward model for effective and robust aligned LGT detection.

ReMoDetect is SOTA in 
Unseen LLMs and Unseen domains.
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Nowadays, LLMs generate fluent and convincing text, which gives people many benefits.

✓ The quality of generated text is comparable to human specialists, 

✓ They are difficult to distinguish from human-written content. 

✓ This phenomenon will grow further and further.

✓ However, this also increases the potential for misuse.

Introduction
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Detecting LGT is a challenging problem in many aspects.

• Accuracy

• LGT needs to be detected while minimizing false positives.

• Generalizability

• Domain generalizability

• LLM generalizability

• Robustness

• Length Robustness

• Paraphrasing Robustness

LLM generated text Detection
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Model based Method [1],[2]

• Training supervised classification model for the detection of LLM-generated texts (LGT).

Metric Based Method (Zero-shot) [3],[4],[5]

• Scoring the text with entropy, perplexity, and log probability.

Watermark [6]

• Generating perturbations to a model’s output and catching them in the outputs.

Prior Works
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[1] Open AI, New AI classifier for indicating AI-written text, 2023 (end of service on July 2023 due to low accuracy.)
[2] Daphne Ippolito et al. Automatic Detection of Generated Text is Easiest when Humans are Fooled, ACL, 2020

[3] DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature, ICML 2023

[4] DetectLLM: Leveraging Log Rank Information for Zero-Shot Detection of Machine-Generated Text, arxiv2023
[5] Intrinsic Dimension Estimation for Robust Detection of AI-Generated Texts, Neurips 2023

[6] Kirchenbauer, J., et al. A watermark for large language models, arXiv 2023.
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To solve the challenging problem: Accuracy, Generalizability, Robustness

Let’s find common characteristics of LLMs!!

Motivation – Human Preference Align
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Common Characteristics of LLMs : Finetuned to fit human preferences using RLHF.
+ using the Reward Model as a proxy of human preference. 
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RLHF
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Common Characteristics of LLMs : Finetuned to fit human preferences using RLHF.
+ using the Reward Model as a proxy of human preference. 

[1] OpenAI, InstructGPT: training language models to follow instructions with human feedback, 2022
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To solve the challenging problem: Accuracy, Generalizability, Robustness

Let’s find common characteristics of LLMs!!

Motivation – Human Preference Align
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Common Characteristics of LLMs : Finetuned to fit human preferences using RLHF.
+ using the Reward Model as a proxy of human preference. 

Reward Model Trained with LLM-generated texts, not human-written texts.

Hypothesis: LGT distribution ≠ Human-written text distribution

(Under human preference ≈ Reward Model)
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Hypothesis & Observation
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Observation: LGT distribution ≠ Human-written text distribution 

And LGTs have higher rewards than human-written texts.

t-SNE of Reward Model

Reward Score Distribution of Reward Model
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Hypothesis & Observation
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Observation: LGTs have higher rewards than human-written texts.

And LGT distribution ≠ Human-written text distribution

t-SNE of Reward Model

Reward Score Distribution of Reward Model

Reward Model Recognize LLM!!
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Two training components to improve the detection ability of the reward model. 

1. Continual Preference Tuning

• Finetune the reward model with LLM/Human text pairs.

• Mitigate forgetting using replay buffer.

Method
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Two training components to improve the detection ability of the reward model. 

2.   Reward Modeling with Mixed Responses

• Partially rephrase the human-written text using LLM. 

• Mixed texts are used as a median preference. P(LLM ≻Mixed ≻ Human)

• Enabling the detector to learn a better decision boundary.

Method
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Baselines: 

• Statistic Metrics (Loglikelihood, Rank)

• Detect GPT-style (Detect GPT, Fast-DetectGPT, LLR, NPR)

• Binary Classifier (OpenAI-Detector ChatGPT-Detector)

Trained Model:

• OpenAssistant/reward-model-deberta-v3-large-v2 (700M parameters)

Trained Dataset:

• HC3 (Human / ChatGPT3.5 pairs): 4400 samples

Evaluation Dataset (AUROC)

• MGTBench, Fast-DetectGPT Bench

• Unseen Domains: Pubmed, Xsum, WritingPrompt, Essay, Reuters

• Unseen LLMs: Llama, Gemini, GPT4, Claude, Phi …

Robustness Evaluation:

• Shorter passage lengths, paraphrasing attack

Experiments
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ReMoDetect significantly outperforms prior detection methods.

Detection performance is consistent among various LLMs and domains.

Results - Fast-DetectGPT Benchmark
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Results - MGTBench
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ReMoDetect significantly outperforms prior detection methods.

Detection performance is consistent among various LLMs and domains
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ReMoDetect is relatively more robust to rephrasing attacks and various length of passage l

engths than other detection methods.

Results – Robustness on Attack and Passage Length
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Robustness on Attack

Robustness on Passage Length
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Results
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ReMoDetect outperform commercial model GPTZero

Detection performance is consistently outperforming even DPO-trained models and 

smaller models

Comparison with Commercial Models

Evaluation Results in DPO-trained LLMs.



Algorithmic Intelligence Lab

Motivation & Observations

Method: Continual Preference Tuning  

✓ Continual training with Human/LLM texts.

✓ Train with Mixed Human/LLM texts.

✓ LGT distribution ≠ Human-written text distribution

✓ ReMoDetect is SOTA for detecting most unseen domains and LLMs.

✓ Hypothesis 1: LLMs are trained with LLM-generated text and model-annotated data.

✓ Hypothesis 2: Human writing styles vary individually, while LLMs are optimized to average.

Summary
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t-SNEReward Score 
Distribution

Aligned LLMs optimized to maximize preferences.
LGTs have higher rewards than human-written texts.

TL; DR. Reward models recognize aligned LLM-generated texts (LGTs) and 
continually train reward model for effective and robust aligned LGT detection.

Take Away Messages

Discussion Point : Why LGT distribution ≠ Human-written text distribution?
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Additional Discussions
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Homepage Paper Demo
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