ReMoDetect: Reward Models Recognize Aligned LLM's Generations

NeurIPS 2024 Poster

Hyunseok Lee*, Jihoon Tack*, Jinwoo Shin

Presenter: Hyunseok Lee

Education

- M.S. in KAIST AI, Mar. 2024 current Advisor: Prof. Jinwoo Shin
- > B.S. in KAIST EE and CS(double major), Mar. 2018 Feb. 2024

Research Interest:

LLM Safety, LLM Agent, Korean LLM

Publication:

"ReMoDetect: Reward Models Recognize Aligned LLM's Generations", NeurIPS 2024
Hyunseok Lee*, Jihoon Tack*, Jinwoo Shin

Experience:

Korean LLM leaderboard 1st place (Oct 2023) hyunseoki/ko-en-llama2-13b

Contact: hs.lee@kaist.ac.kr

Objective. Detect LLM-generated texts (LGTs)

ReMoDetect: Reward Models Recognize Aligned LLM's Generations

NeurIPS 2024 Poster

Hyunseok Lee*, Jihoon Tack*, Jinwoo Shin

Presenter: Hyunseok Lee

Overview

TL; DR. Reward models recognize aligned LLM-generated texts (LGTs) and continually train reward model for effective and robust aligned LGT detection.

Motivation & Observations

Aligned LLMs optimized to maximize preferences. ↔ LGTs have higher rewards than human-written texts.

✓ Reward Model recognize LLM

Method: Continual Preference Tuning

- ✓ Continual training with Human/LLM texts.
- ✓ Train with Mixed Human/LLM texts.

ReMoDetect is SOTA in

Unseen LLMs and Unseen domains.

Model	Domain	Loglik.	Rank	D-GPT	LRR	NPR	FD-GPT	Open-D	Chat-D	Ours
CDTD 6	PubMed	87.8	59.8	74.4	74.3	67.8	90.2	61.9	21.9	96.4
GP13.5	XSum	95.8	74.9	89.2	91.6	86.6	99.1	91.5	9.7	99.9
Turbo	WP-s	97.4	80.7	94.7	89.6	94.2	99.2	70.9	27.5	99.8
	PubMed	81.0	59.7	68.1	68.1	63.3	85.0	53.1	28.1	96.1
GPT4	XSum	79.8	66.4	67.1	74.5	64.8	90.7	67.8	50.3	98.7
	WP-s	85.5	71.5	80.9	70.3	78.0	96.1	50.7	45.3	98.8
CPT4	PubMed	86.5	60.8	63.6	73.5	63.7	88.8	55.8	31.0	97.0
GP14	XSum	90.9	73.4	83.2	87.9	81.8	97.4	88.2	4.4	100.0
Turbo	WP-s	97.6	80.8	92.8	92.9	92.5	99.4	72.3	22.5	99.8
Llama2	PubMed	85.4	60.9	66.0	71.3	65.0	90.8	52.9	35.1	96.3
ZOD	XSum	97.9	74.9	93.2	95.5	93.8	99.7	96.2	7.1	99.8
70B	WP-s	97.1	77.9	95.5	90.1	95.8	99.9	77.5	28.1	99.5
Comini	PubMed	83.0	58.3	63.2	75.0	66.8	82.1	57.3	39.3	86.4
Gemini	XSum	78.6	44.5	72.8	73.0	79.6	79.5	72.2	54.7	74.5
pro	WP-s	75.8	63.0	77.8	72.7	81.1	78.0	70.2	48.0	86.4
Caluda2	PubMed	85.5	60.3	66.3	74.3	64.4	88.2	48.9	33.1	96.4
Calude3	XSum	95.9	71.1	85.3	89.7	84.7	96.2	86.2	5.3	99.9
Opus	WP-s	93.8	75.0	91.9	86.5	91.8	93.5	65.7	24.1	99.5
Average	-	88.6	67.4	79.2	80.6	78.7	91.9	68.9	28.6	95.8

Introduction

Nowadays, LLMs generate fluent and convincing text, which gives people many benefits.

- ✓ The quality of generated text is comparable to human specialists,
- ✓ They are **difficult to distinguish** from human-written content.
- ✓ This phenomenon will grow further and further.
- \checkmark However, this also increases the potential for misuse.

Toxicity

Harmful or discriminatory language or content

Hallucination

Factually incorrect content

Legal Aspects

Data Protection, Intellectual Property, and the EU AI Act Detecting LGT is a challenging problem in many aspects.

- Accuracy
 - LGT needs to be detected while minimizing false positives.
- Generalizability
 - Domain generalizability
 - LLM generalizability
- Robustness
 - Length Robustness
 - Paraphrasing Robustness

Model based Method [1],[2]

• Training supervised classification model for the detection of LLM-generated texts (LGT).

Metric Based Method (Zero-shot) [3],[4],[5]

• Scoring the text with entropy, perplexity, and log probability.

Watermark [6]

• Generating perturbations to a model's output and catching them in the outputs.

[1] Open AI, New AI classifier for indicating AI-written text, 2023 (end of service on July 2023 due to low accuracy.) [2] Daphne Ippolito et al. Automatic Detection of Generated Text is Easiest when Humans are Fooled, ACL, 2020 [2] Detect CPT: Zero, Shot Machine, Concreted Text Detection using Brobability Curvature, ICML 2023

- [3] DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature, ICML 2023
- [4] DetectLLM: Leveraging Log Rank Information for Zero-Shot Detection of Machine-Generated Text, arxiv2023
- [5] Intrinsic Dimension Estimation for Robust Detection of Al-Generated Texts, Neurips 2023
- [6] Kirchenbauer, J., et al. A watermark for large language models, arXiv 2023.

Algorithmic Intelligence Lab

To solve the challenging problem: Accuracy, Generalizability, Robustness

Let's find common characteristics of LLMs!!

Common Characteristics of LLMs : Finetuned to fit human preferences using RLHF. + using the Reward Model as a proxy of human preference.

Common Characteristics of LLMs : Finetuned to fit human preferences using RLHF. + using the Reward Model as a proxy of human preference.

Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

ූ Explain the moon landing to a 6 year old

Some people went to the moon ...

Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.

Step 3

The policy

generates

an output.

reward for

the policy

Optimize a policy against the reward model using reinforcement learning.

[1] OpenAI, InstructGPT: training language models to follow instructions with human feedback, 2022 **Algorithmic Intelligence Lab**

To solve the challenging problem: Accuracy, Generalizability, Robustness

Let's find common characteristics of LLMs!!

Common Characteristics of LLMs : Finetuned to fit human preferences using RLHF. + using the Reward Model as a proxy of human preference.

Reward Model Trained with LLM-generated texts, not human-written texts.

↔ Hypothesis: LGT distribution ≠ Human-written text distribution

(Under human preference \approx Reward Model)

Observation: LGT distribution \neq **Human-written text distribution**

And LGTs have higher rewards than human-written texts.

t-SNE of Reward Model

Reward Score Distribution of Reward Model

Observation: LGTs have higher rewards than human-written texts.

And LGT distribution \neq Human-written text distribution

t-SNE of Reward Model

Reward Model Recognize LLM!!

Two training components to improve the detection ability of the reward model.

- 1. Continual Preference Tuning
- Finetune the reward model with LLM/Human text pairs.
- Mitigate forgetting using replay buffer.

$$L_{RM}(x, y_w, y_l) := -\log \sigma \left(r_\phi(x, y_w) - r_\phi(x, y_l) \right)$$

 $L_{\text{cont}} := L_{RM}(x, y_{LM}, y_{HU}) + \lambda d\left(r_{\phi}(x_{\text{buf}}, y_{\text{buf}}), r_{\phi_0}(x_{\text{buf}}, y_{\text{buf}})\right)$

Algorithmic Intelligence Lab

Two training components to improve the detection ability of the reward model.

2. Reward Modeling with Mixed Responses

- **Partially rephrase** the human-written text using LLM.
- Mixed texts are used as a median preference. P(LLM > Mixed > Human)
- Enabling the detector to learn a **better decision boundary**.

$$L_{\text{ours}} := L_{\text{cont}} + \beta_1 L_{RM}(x, y_{MIX}, y_{HU}) + \beta_2 L_{RM}(x, y_{LM}, y_{MIX})$$

Experiments

Baselines:

- Statistic Metrics (Loglikelihood, Rank)
- Detect GPT-style (Detect GPT, Fast-DetectGPT, LLR, NPR)
- Binary Classifier (OpenAI-Detector ChatGPT-Detector)

Trained Model:

OpenAssistant/reward-model-deberta-v3-large-v2 (700M parameters)

Trained Dataset:

• HC3 (Human / ChatGPT3.5 pairs): 4400 samples

Evaluation Dataset (AUROC)

- MGTBench, Fast-DetectGPT Bench
- Unseen Domains: Pubmed, Xsum, WritingPrompt, Essay, Reuters
- Unseen LLMs: Llama, Gemini, GPT4, Claude, Phi ...

Robustness Evaluation:

• Shorter passage lengths, paraphrasing attack

Model	Domain	Loglik.	Rank	D-GPT	LRR	NPR	FD-GPT	Open-D	Chat-D	Ours
GPT3.5 Turbo	PubMed XSum WP-s	87.8 95.8 97.4	59.8 74.9 80.7	74.4 89.2 94.7	74.3 91.6 89.6	67.8 86.6 94.2	90.2 99.1 99.2	61.9 91.5 70.9	21.9 9.7 27.5	96.4 99.9 99.8
GPT4	PubMed XSum WP-s	81.0 79.8 85.5	59.7 66.4 71.5	68.1 67.1 80.9	68.1 74.5 70.3	63.3 64.8 78.0	85.0 90.7 96.1	53.1 67.8 50.7	28.1 50.3 45.3	96.1 98.7 98.8
GPT4 Turbo	PubMed XSum WP-s	86.5 90.9 97.6	60.8 73.4 80.8	63.6 83.2 92.8	73.5 87.9 92.9	63.7 81.8 92.5	88.8 97.4 99.4	55.8 88.2 72.3	31.0 4.4 22.5	97.0 100.0 99.8
Llama3 70B	PubMed XSum WP-s	85.4 97.9 97.1	60.9 74.9 77.9	66.0 93.2 95.5	71.3 95.5 90.1	65.0 93.8 95.8	90.8 99.7 99.9	52.9 96.2 77.5	35.1 7.1 28.1	96.3 99.8 99.5
Gemini pro	PubMed XSum WP-s	83.0 78.6 75.8	58.3 44.5 63.0	63.2 72.8 77.8	75.0 73.0 72.7	66.8 79.6 81.1	82.1 79.5 78.0	57.3 72.2 70.2	39.3 54.7 48.0	86.4 74.5 86.4
Calude3 Opus	PubMed XSum WP-s	85.5 95.9 93.8	60.3 71.1 75.0	66.3 85.3 91.9	74.3 89.7 86.5	64.4 84.7 91.8	88.2 96.2 93.5	48.9 86.2 65.7	33.1 5.3 24.1	96.4 99.9 99.5
Average	-	88.6	67.4	79.2	80.6	78.7	91.9	68.9	28.6	95.8

(a) Fast-DetectGPT benchmark [12]: PubMed, XSum, and WritingPrompts-small (WP-s)

ReMoDetect significantly outperforms prior detection methods.

Detection performance is consistent among various LLMs and domains.

Model	Domain	Loglik.	Rank	D-GPT	LRR	NPR	FD-GPT	Open-D	Chat-D	Ours
GPT3.5 Turbo	Essay Reuters WP	97.3 98.2 89.8	95.7 94.8 90.2	57.8 50.5 52.9	97.8 98.7 77.2	48.1 51.1 48.3	99.6 99.9 91.7	57.5 98.5 50.8	81.5 97.2 66.3	100.0 99.9 100.0
GPT4 Turbo	Essay Reuters WP	96.5 95.8 94.2	93.9 93.1 91.0	58.9 52.6 53.5	93.9 94.9 85.2	62.4 53.3 55.3	98.9 99.4 93.0	55.8 87.5 68.2	77.1 92.4 67.9	99.9 99.9 99.9
Llama3 70B	Essay Reuters WP	98.3 99.9 97.3	95.3 89.7 90.8	56.2 58.9 57.2	98.9 98.7 91.1	57.8 59.2 60.4	99.5 100.0 99.1	83.9 96.7 86.6	91.7 90.8 77.3	100.0 100.0 99.8
Gemini pro	Essay Reuters WP	98.3 99.9 91.7	93.6 83.1 82.0	64.4 73.0 63.9	97.7 99.3 76.7	65.5 74.9 67.3	98.3 100.0 99.2	48.9 95.3 68.8	65.9 91.5 73.4	100.0 100.0 99.8
Claude	Essay Reuters WP	91.6 91.3 88.4	85.9 79.5 80.0	44.2 68.1 60.0	82.7 79.2 71.2	48.7 68.7 60.7	83.6 87.8 74.1	32.4 65.5 46.2	19.6 25.6 26.7	99.7 99.8 99.1
Average	-	95.2	89.2	58.1	89.5	58.8	94.9	69.5	69.7	99.9

(b) MGTBench [14]: Essay, Reuters, and WritingPrompts (WP)

ReMoDetect significantly outperforms prior detection methods.

Detection performance is consistent among various LLMs and domains

Model	Accuracy	Loglik.	D-GPT	NPR	FD-GPT	Ours
GPT3.5	Original	93.6	86.1	82.9	96.1	98.7
Turbo	Attacked	80.5 (-14.0%)	60.3 (-30.0%)	73.5 (-11.3%)	87.2 (-9.3%)	91.4 (-7.4%)
GPT4	Original	91.7	79.9	79.4	95.2	98.9
Turbo	Attacked	80.0 (-12.7%)	50.3 (-37.0%)	61.3 (-22.8%)	87.3 (-8.3%)	94.6 (-4.4%)
Claude3	Original	91.7	81.1	80.3	92.6	98.6
Opus	Attacked	80.5 (-15.8%)	55.2 (-32.0%)	60.1 (-25.2%)	81.6 (-11.9%)	91.1 (-7.1%)

Robustness on Attack

Robustness on Passage Length

ReMoDetect is relatively more **robust to rephrasing attacks** and **various length** of passage l engths than other detection methods.

Comparison with Commercial Models

Model	GPT 3.5 Turbo	GPT4	GPT4 Turbo	Llama3 70B	Gemini pro	Claude3-Opus
GPTZero	93.5	88.5	95.7	96.6	82.9	95.7
Ours	98.7	97.9	98.9	98.5	82.4	98.6

Evaluation Results in DPO-trained LLMs.

Model	Domain	Loglik.	Rank	D-GPT	LRR	NPR	FD-GPT	Open-D	Chat-D	Ours
Phi-3 mini	PubMed XSum WP-s	65.0 70.3 82.4	56.2 64.1 73.3	46.8 69.0 89.6	48.8 61.7 68.8	45.4 70.5 87.8	63.7 91.0 96.7	37.7 82.7 60.0	80.7 23.4 31.1	94.5 97.6 99.3
Phi-3 small	PubMed XSum WP-s	57.2 81.1 84.0	50.4 69.7 72.3	48.1 70.0 86.7	51.2 68.8 67.1	48.1 72.7 83.2	59.9 95.6 97.2	31.9 79.3 58.6	82.7 19.5 32.2	91.7 98.7 97.4
Phi-3 medium	PubMed XSum WP-s	65.4 64.5 83.1	55.4 61.2 73.6	51.2 80.7 90.3	50.3 79.0 70.6	37.6 81.3 90.2	61.7 85.4 95.7	34.2 75.0 53.9	15.8 18.1 38.5	95.2 98.0 98.8

ReMoDetect outperform commercial model GPTZero

Detection performance is consistently outperforming even DPO-trained models and smaller models

TL; DR. Reward models recognize aligned LLM-generated texts (LGTs) and continually train reward model for effective and robust aligned LGT detection.

Motivation & Observations

Aligned LLMs optimized to **maximize preferences.** ↔ LGTs have higher rewards than human-written texts.

Method: Continual Preference Tuning

- ✓ Continual training with Human/LLM texts.
- ✓ Train with Mixed Human/LLM texts.

Take Away Messages

- ✓ LGT distribution \neq Human-written text distribution
- ✓ ReMoDetect is **SOTA** for detecting most unseen domains and LLMs.

Discussion Point : Why LGT distribution \neq Human-written text distribution?

- ✓ Hypothesis 1: LLMs are trained with LLM-generated text and model-annotated data.
- ✓ Hypothesis 2: Human writing styles vary individually, while LLMs are optimized to average.

